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A Finite Element Analysis of Planar
Circulators Using Arbitrarily Shaped
Resonators

RONALD W. LYON, MEMBER, IEEE AND JOSEPH HELSZAJN, MEMBER, IEEE

Abstract — A planar circulator consists, in general, of three transmission
lines, connected through suitable matching networks to a magnetized
ferrite resonator having three-fold symmetry. This paper describes a finite
element analysis which enables the Z-matrix of a planar circulator using
arbitrary shaped resonators to be calculated. This technique allows quite
general computer programs to be written which permit tables of circulation
solutions to be calculated. Results for junctions using disk, triangular, and
irregular hexagonal resonators are included in the text. The frequency
response of junction circulators using various configurations whose mag-
netic variables have been chosen so that they operate over the widely used
tracking interval has also been evaluated. The optimum response is in each
case associated with a unique coupling angle.

I. INTRODUCTION

PLANAR junction circulator consists, in general, of

a three-fold symmetric resonator of arbitrary shape
to which three transmission lines are connected. A com-
plete description of planar circulators using disk resonators
has been presented in the literature [1}-[5], and some
approximate analyses are available for junctions using
triangular [6] and Wye [7] resonators. The general boundary
value problem has been treated by Miyoshi [8], [9] who
used a contour integration formulation to form the entries
of the impedance matrix of the junction. Miyoshi also
presented an alternative analysis in which the open circuit
parameters of the junction are expanded in terms of the
modes of the magnetized planar resonator. The decoupled
resonator is analyzed using a variational method where the
fields are expressed as a single polynomial expansion for
the complete resonator. This second method requires that a
mathematical derivation of the polynomial coefficients be
derived analytically for each individual resonator shape
required.

This paper describes a finite element approach using the
variational formulation introduced by Miyoshi. The
method, which reduces to that of Silvester [10]-[14] in the
demagnetized case, differs from that of Miyoshi in that it
permits a complicated resonator shape to be subdivided
into a number of smaller elements, thus allowing a quite
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general computer program to be written. Both the finite
element method, described in this paper, and the contour
integration method used by Miyoshi, currently require the
manipulation of relatively large matrices. The finite ele-
ment method, however, has the advantage that it is possi-
ble to build on the work which has been found valuable in
waveguide analysis. The contour integration approach re-
quires that the matrix problem be recomputed for each
coupling width chosen, whereas in the finite-element ap-
proach the coupling angle is not chosen until after the
matrix manipulations are completed. This may result in a
computational saving if a large number of coupling angles
are to be considered.

To determine the performance of the three-port device as
a circulator, the circulation boundary conditions [3] are
imposed on the elements of the Z matrix. This gives the
operating frequency and gyrator level of the device and,
subsequently, allows the frequency response to be calcu-
lated. Circulation conditions over the complete k /p range
for circulators using disk, irregular hexagonal, and triangu-
lar resonators are presented in this paper. As an applica-
tion of this work, the frequency response of the input
admittance has been evaluated with x/u=0.67 at the
center frequency.

It is shown that circulators using each resonator shape
can be arranged to exhibit well-behaved equivalent circuits.
These would be consistent with the design of an octave-
band circulator subject to the design of a suitable matching
network. None of the resonators analyzed, however, exhibit
characteristics which would allow any one to be designated
‘ideal’ for the design of octave-band circulators.

JI. ELECTROMAGNETIC AND NETWORK
FORMULATION FOR PLANAR JUNCTION CIRCULATORS

One description of a planar junction circulator is in
terms of its impedance matrix. In order to obtain this
matrix, the relationship between the electric and magnetic
fields at the coupling ports must be determined. Bosma [1],
[2] has obtained such a relationship for a disk circulator
using Green’s function techniques. A similar procedure has
been utilized by Miyoshi [8] for arbitrary resonator shapes
in which he derives an expansion for the open circuit
parameters in terms of a series of eigenfunctions ¢, which
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he calculates using a variational method. In this section,
this expansion due to Miyoshi is developed.

A generalized schematic diagram of a circulator is shown
in Fig. 1. It consists of a three-fold symmetric, magnetized,
ferrite resonator to which coupling lines are connected.
These are printed onto either a dielectric or demagnetized
ferrite substrate. The boundary of the resonator is des-
ignated by a contour § along which two unit vectors are
defined, a normal vector A and a tangential vector #. The
separation H between the ground plane and the center
conductor is arranged to be small with respect to the
wavelength in order to ensure that higher order modes
which vary in the z direction are suppressed. This restric-
tion, when applied together with the boundary conditions
on the center conductor, implies that only the (E,, H,, H,)
field components exist.

The E, field in a planar junction circulator satisfies the
wave equation [1], [2]

(Vz2 + kesz)Ez =0

where k., the wave number, is given by

(1)

(2)

¢, is the relative permittivity of the ferrite medium, and the
effective permeability p. is given by
”2 _ I€2
; ()
where p and k are the diagonal and off-diagonal compo-
nents of the tensor permeability of the ferrite.
On the boundary, the tangential magnetic field H, is
equal to zero and this may be expressed as a boundary
condition on E, to give

2 _ 2
ke = @ othesr€of s+

Megr =

d0E, k 0E,
o +j; % =0 oné. (4a)
At the coupling ports, H, is not zero and E, satisfies
JE, k JE, |
on + J"; o1 = Jwy‘Op’efth' (4b)

In order to solve (1) in conjunction with (4a-b), it is
convenient to introduce a Green’s function G(r|ry). Two
variables are defined when using a Green’s function; the
point » at which the E, field is observed and the coupling
port coordinate r,. These conventions are summarized in
Fig. 2.

The Green’s function G(r|r,) is defined as the solution
to the equation

)

where 8(r — ry) is the dirac delta function. The Green’s
function must satisfy the boundary condition
3G(rir) _ .k 0G(rlny) _
an N at

(Vz2 + kgff)G(”’O) = — Jjopolerd(r —1y)

0. (6)

The Green’s function, whose units are (£/m), is a gen-
eralization of that used for a disk by Bosma [1] who sets
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Fig. 1. Generalized schematic diagram of planar junction circulator.
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Fig. 2. Coordinate convention for Green’s function.

out its properties in detail and show that

E(r)= Y /G("l"o)Ht("o)dto (7

i=1"A
where the integration is carried out over the coupling port
P,. E,(r) applies at any point in the resonator including the
intervals defined by the coupling points.

At this point, the derivation of Miyoshi’s 8] contour
integration method and variational method diverge. The
contour integration method consists of discretizing the
boundary and, by employing a different Green’s function
which satisfies the wave equation but which does not
satisfy (6), reducing a contour integration whose form is
similar to (7) to a set of matrix equations. In his variational
approach, Miyoshi expanded the Green’s function as a
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series of eigenfunctions ¢, to give

0(r)65(n)

(®)
k2 - keff

G(riry) = jopohes Z

a=1

In practice, sufficiently accurate results are obtained when

this series is truncated to around 10 terms. The eigenfunc-

tions ¢, and the eigenvalues k&, are the solutions to the
differential equation

(V2 +kZ)d,(r)=0 (9)

subject to the boundary condition imposed on the Green’s
function given in (6). The eigenfunctions are orthogonal
and are normalized so that

[ [our)ex(r)as=1. (10)

In the demagnetized planar circuit, ¢, is directly equivalent
to the electric field of the resonant modes in the planar
resonator, whereas, in the magnetized case, ¢, represents
the complex conjugate of E,.

Assuming that H, is a constant over each coupling port,
Miyoshi derived the relation between the average electric
field at port i and the magnetic field at port j from (7) and

(8) giving

J@Rol st Z

m, =" pE qua r)drf¢(ro)dzo

a=1 k2 eff
(11)

assuming all ports other than j are open circuited.

In order to derive a relationship for Z,, from (11) it is
necessary to introduce the characteristic impedance R, of a
planar transmission line of width W, substrate thickness H,
and constitutive parameters ¢; and p... In stripline, R, may
be calculated using Richardson’s technique [15] while the
equivalent waveguide technique is commonly used in mi-
crostrip [17], [18]. For an n port where each of the coupling
ports are of equal width W, Z  is given by

_ JR ket &
th_ w = k2 qu* r)dtf¢a r)OdtO
(12)

This analysis is a more general statement of the treat-
ment presented by Bosma [2] for the particular case of a
disk resonator.

2
k eff

III. VARIATIONAL SOLUTION FOR EIGENFUNCTIONS

UsSING MATRIX EIGENVALUE METHOD

The Z matrix of a junction circulator can be derived
provided that the eigenfunctions ¢,, which satisfy (9) to-
gether with the boundary conditions given by (6), are
known. It is only possible to solve these equations analyti-
cally in a very small number of cases, and the most
convenient method, in the general case, is to use a varia-
tional approach.

Miyoshi [8] has recognized that the trial function ¢,
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which causes the functional

F(4,(r) = [ [Io:0i(r)? = K216 ds

- A 1)

to be minimized, satisfies both the differential equation
and the boundary conditions for the eigenfunctions ¢,.
When the value of k /u is set to zero, F(¢,) reduces to the
functional used by Silvester [10] in his analysis of arbi-
trarily shaped waveguides.

The trial function ¢, is an approximation to the exact
function ¢, and it is expanded as

o (r)= X ua,.

=1

(14)

The terms e, are a suitable set of real basis functions and u,
are the complex coefficients. There are n basis functions
included in the expansion. In this paper, the basis func-

tions are chosen using the finite element method.
Substituting (14) into the functional F(¢,) in (13) and
ensuring that the functional is minimized by imposing the

Rayleigh-Ritz condition
OF (¢,(r))

du}

(15)

reduces the problem to a set of simultaneous equations of

the form
[[4]-&2[B]][«]=0 (16)

which may be recognized to be the general matrix eigen-
value problem

[4][u]=KZ[B][u]. (17)

If the symmetric square matrix B is reduced to the product
LLT, where L is a lower triangular matrix, (17) may be
reduced to the familiar eigenvalue problem

[ IANL ] [u] = KZ[u].
A and B are square matrices

ffV,a v ds = j— ¢a ajdt

and may be reduced to

(18)

(19)

K
[4]=[P]+ /% [C] (20)
where
D,={ fs v,a,V,a,ds (21a)
c da, p
= ga‘_éTt‘ t (21b)
The elements of the B matrix are given by
Blj=f/;a,ajds. (22)

The B matrix is reduced to LLT computationally and, thus,
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an analytic expression for L is not given. Once 7 is selected,
the matrix eigenvalue equation will yield n eigenvalues k>
and column eigenvectors [u], n is the number of basis
functions included in (14).

Silvester, using the finite element method, has calculated
both the B matrix and the D matrix (the B matrix is the 7
matrix and the D matrix is the § matrix in Silvester’s
notation) which are symmetric and are fully tabulated in
[11]. The C matrix is skew-symmetric and is derived in this

paper.
1V. FmiTe ELEMENT ANALYSIS

In the variational method, it is possible to choose any
suitable set of basis functions to expand the trial function
((14)). Miyoshi [8] uses a polynomial expansion which
describes the fields in the complete resonator. This has the
disadvantage that the A and B matrices given by (20) and
(22) must be recalculated for every different resonator
shape. In the finite element method used by Silvester
[10]-[14] in his analysis of arbitrary shaped waveguides,
this problem is overcome by subdividing the resonator
region into triangular elements. A polynomial expansion
for the eigenfunction ¢, is formed in each triangle in terms
of (u,&,) in (14) enabling the 4 and B matrices to be
calculated. These are then assembled together to form the
complete matrix eigenvalue problem.

Using the finite element method, Silvester [11] has pre-
sented expressions for polynomial basis functions in trian-
gular elements. These are given in terms of triangular area
coordinates for each point inside a triangle. Each coordi-
nates is defined as the ratio of the perpendicular distance
to the wall opposite vertex i to the length of the altitude
drawn to vertex i. From Fig. 3 it can be seen that the a;
coordinate of point Q is given by

e

=5 (23)

and the other coordinates {, and {; are defined in a similar
manner. It is important to note that the three coordinates
are related by [11]

S+6+8G=1. (24)

In the finite element method described in this paper, the
basis functions «, in (14) are polynomials of degree p and
these are arranged to provide a p’th-order interpolation to
the eigenfunction ¢, over each triangle. In general, a poly-
nomial of degree p in two coordinates will have m coeffi-
cients where

m=(p+1)(p+2)/2. (25)

Over each triangular element, m points (nodes) are dis-
tributed and each basis function is arranged to take the
value 1 at one node and O at all the others. Thus, the
coefficients of the basis functions «, in (14) represent
the amplitude of the eigenfunction ¢, at point i. The
distribution of the nodes over a triangle for first-, second-,
third-, and fourth-order polynomials are illustrated in Fig.
4. Each point is labeled with three integers, i, j, and k from
which its triangular area coordinates ({,¢{,;,{;) can be
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Fig. 3. Dimensions used in the definition of triangular area coordinates.
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Fig. 4. Distribution of nodes over triangle for first-, second-, third-, and
fourth-order polynomials.

derived using the relation

ik
§’§a =(L,L,"‘). 26
(tnbnt) =5 2.0 (26)
Equation (24) is also satisfied since

i+j+k=p.

(27)
Associated with each point is a basis function
a; %(§, §5, §3) which is given by [11]

azjk(§1’§2’§3)=Pz(§1)Pj(§2)Pk(§3) (28)

where

: (M) r1

7 (29a)

p(5)- T
=1, r=0 (29b)
where g and r are dummy variables which satisfy g € (1,2,3)
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and r €{i, j, k}. The basis function «a,, takes the value 1
at node (i, j, k) and the value 0 at all other nodes in the
triangle.

These formulas may now be substituted into (20) and
(22) to calculate the A and B matrices for a triangle.

The number of terms taken in (14) is determined by the
number of triangles included in a finite element division of
any particular resonator shape. There is not a simple
relation between the number of elements and the number
of basis functions since, in essence, there will be one basis
function for each node in the resonator. The number of
nodes in a particular element is a function of the order of
the polynomial approximation within that element. Equa-
tion (25) gives the number of nodes in each element as a
function of the nodes of approximation p.

In addition to the order of polynomial approximation
within each element the total number of nodes in any
resonator is determined by the number and orientation of
the elements in the resonator. This is demonstrated in Fig,
S, in which a triangle is split into three elements each of
which, individually, have three nodes. Once they are assem-
bled, however, certain nodes coincide leaving only four in
total. Thus, it is not possible to make a simple statement of
the value of » in (14). In practice, the value 90 <»n <100
have been found to give accurate results.

The C matrix involves integration around the contour §
and so the matrix has the value [0] if the element does not
lie along the boundary. If the element has one or more of
its sides lying along the boundary the C matrix for this
element can be written down provided it is known for the
case where an element has only one side on the boundary.

Consider the case where the first-order polynomial inter-
polation is to be employed (i.e., p =1 in (25)). The follow-
ing expressions for the basis functions a g0y, and agyy,
can be derived from (28):

o0 = §3
a0 =5,
g = §3. (30)

Substituting these expressions into (21b) leads to the fol-
lowing expression for the C matrix when the magnetic wall
lies opposite the point (1,0,0):

0 0 0
|
0 1 -1
This matrix can be seen to be skew symmetric.
If the boundary lies opposite points (0,1,0) or (0,0,1),
the C matrix may be calculated simply by re-arranging the
matrix derived for a boundary opposite (1,0,0). For exam-
ple, in the case where a boundary lies opposite point
(0,1,0), subscript (1) — (2) subscript (2) = (3), and sub-
script (3) = (1). Thus, the C matrix is given by

-1 0 1
0 0 0].

-1 0 1

(31)

[C(O,I,O)] -

(32)
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4

Fig. 5. Triangle split into three elements.

If the element has two of three sides which lie along the
boundary, the C matrix is calculated by adding the matrices
derived for elements which have magnetic walls on a single
side.

The matrices given in (31) and (32) refer to a single,
isolated triangular element. Several matrices must be as-
sembled together, however, to form the complete eigen-
value problem. Consider the case illustrated in Fig. 5 where
a triangle is split up into three elements in a fashion which
preserves the 120° symmetry. The C matrix for the com-
plete shape is given by

o0 o0 0]foo0 o0 o
1o 1 =1 ol lo o o o
[Gl={g 1 1 ol*o o 1 1
00 o0 0] lo o 1 -1

o o000l o o o o

o -1 0 1f_jo 0o -1 1

o 00 0ol lo 1 o0 -1
0 -1 0 1] lo -1 1

(33)
which is also skew-symmetric. In the examples considered
in this paper, the 4, B, and C matrices, when finally
assembled are of the order 100 X 100.

The calculation of the C matrix for first-order polynomi-
als is reasonably easy, but for higher order polynomials the
volume of algebra becomes too large to be performed by
hand. Silvester [11] encountered similar difficulties and in
order to overcome the problem a computer program was
written to evaluate the matrix elements analytically. By
adopting a similar approach the authors have evaluated the
C matrices for up to fourth-order interpolation and these
are tabulated in Table 1. In most cases, fourth-order inter-
polation is the maximum which can be used in practice as
there are 15 nodes in each element and large matrices can
be generated when only a few elements are incorporated.
Silvester [11] presents a table contrasting the relative merits
of using higher order interpolation or alternatively more
elements using a lower order polynomial approximation.

V. COMPUTATION OF CIRCULATION CONDITIONS

A suite of computer programs have been written which
implement the theoretical results discussed in the previous
sections. These consist, firstly, of a program which uses the
finite element method to evaluate the resonant modes of a
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TABLEI
TABLE OF C MATRICES FOR POLYNOMIALS UP TO FOURTH ORDER

Nz |

N= 3
COMHMIIN DENOHINATOR 1S

COMMUN DENOMINATUR 15§ 2 8¢

[ 0 [} 0 [ [ 0 n 0

o ! ¢ J 3 0 0 0 0 0 [ n 0

. v 0 0 0 0 0 0 [ 0 n 0

e “ o o © o O & 0 o O

0 0 0 0 0 ] 0 0 n 0

o 0 0 0 0 [ 0 0 » 0

v 0 0 0 0 0 80 =57 2a =1

0 n 0 0 0 0 57 0 =M 24

v 0 0 0 0 0 =24 81 n 57

v 0 0 0 "0 0 T -24 S7 =40

N= 2 Nz 4
COuANN UENNMINATUR TS 6 COMNUN DENOMINATUR IS 1890

o 0 0 0 0 0 ] 1] 0 0 [} 0 0 0 n 0 0 0 0 0 0
v 0 0 0 0 0 v 0 0 0 0 0 0 [ n 0 0 0 0 0 n
v 0 0 0 0 0 v 0 0 n 0 0 0 0 n 0 0 0 0 0 0
v 0 o 3 =4 1 v 0 o 0 0 0 0 0 n 0 0 0 0 0 n
v 0 0 ] 0 -4 v 0 0 0 0 0 0 0 n 0 0 0 0 0 0
v 0 o =1 a =3 0 0 0 0 0 0 0 [} n ] 0 0 0 0 0
0 0 0 0 0 0 [ [ n 0 0 0 0 0 o
0 0 0 0 0 [ 0 0 n 0 [ 0 0 0 0
v 0 0 0 0 0 0 0 n 0 0 0 0 0 0
0 0 0 0 0 [ 0 0 " a 0 0 0 0 0
0 0 0 0 0 [ 0 0 n 0 945=1472 Bpa -384 107
4 0 0 0 0 0 0 0 fn 0 1072 0=2112 {024 =3R4
0 0 0 o 0 0 0 [ n 0 -804 2112 0-2112 A0R
v 0 0 0 0 0 0 0 n 0 3M4-1028 2192 04472
v 0 0 D __o0 o 0 0 n 0 ~107 304 ~Boa §1472 =945

Fig. 6. Definition of coupling angle ¢.
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magnetized ferrite-loaded planar resonator. These resonant
modes are then used by a second program to calculate the
elements of the impedance matrix. This program then
determines the lowest value of k., R which satisfies the
first circulation condition [3].

Im(Z,,) =0 (34)

for a range of values of x /p and coupling angles (the angle
which sustends the coupling interval W in Fig, 6). The
input resistance of the circulator at this value of k4R is
then calculated using the second circulation condition

Ry, =Re(Z;,) (35)

where
Zj
Zin=211+’ZT~ (36)
12
In keeping with convention, the circulation data are tabu-

lated in terms of G, and B, where

Zin (37)

In Fig. 7(a) and (b), the results obtained using the
method described in this paper are compared with those
produced by previous authors for a disk [3], [5]. In calculat-
ing these results, the infinite series in (12) has been trun-
cated to 10 terms. It can be seen that the agreement is best
for larger coupling angles and less good for small values of
¥. The reason for this is that smaller coupling angles excite
higher order modes more strongly, and these higher order
modes tend to be computed less accurately by the finite
element program.

Yin = Gin + jBin =
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2R

Circulator Using Disk
Fig. 8. Coordinate system of disk resonator.

R=ANTZ

W=/3Rtany
TN

A=2Rsin(d/2); B=2RsIn(60-9/2)
W=2Rcos{o/2)tany

A=2Rsin{p/2), B=2Rsin(60-¢/2.
W=2Rc§s (60-9/2)tang

Fig. 9. Coordinate system of triangle, regular hexagonal, narrow, and
broad-wall coupled irregular hexagonal resonators.

In Tables II-VI, the first and second circulation solu-
tions are tabulated for disk, triangular, regular hexagon,
narrow and broad wall coupled irregular hexagons il-
lustrated in Figs. 8 and 9. These tables are computed
retaining the first 10 eigenfunctions ¢, in (12). It is ob-
served that at certain points in the tables (e.g., a triangle
0.7<x/p<0.85) the values kyR and Gy, /Y, take the
value 0. This indicates that no circulation condition was
located with kR <3.0. In certain cases, G, /Y, takes a
negative value. At these points, the lowest circulation con-
dition represents rotation in the opposite direction.

The values of G;, and B,, are normalized to Y, which is

given by
Y, = /e ¥, (38)
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TABLE II
TABLES OF ko R (TABLE A) AND G /Y, (TABLE B) For
CIRCULATORS USING DIsK,
TRIANGLE REGULAR HEXAGON, NARROW AND BROAD-WALL
COUPLED
IRREGULAR HEXAGON (¢ = 50), RESPECTIVELY

First circulation solution for disk circulater

PS1 0.200 0.300 0.400 0.500 0.600 0.700 0.800
K/U Keff.R Keff.R Keff.R Keff.R Keff.R Keff.R Keff.-R
0.10 1.862 1.859 1.857 1.854 1.851 1.848 1.846
0.15 1.864 1.859 1.852 1.845 1.839 1.833 1.828
0.20 1.869 1.859 1.847 1.834 1.821 1.810 1.801
0.25 1.880 1.861 1.840 1.818 1.798 1.780 1.766
0.30 1.903 1.869 1.833 1.798 1.767 1.741 1.720
0.35 1.968 1.889 1.826 1.772 1.729 1.693 1.665
0.40 2.206 1.968 1.823 1.741 1.681 1.636 1.600
0.45 2.216 2.180 1.842 1.711 1.630 1.572 1.529
0.50 2.228 2.224 2.192 1.664 1.564 1.497 1.448
0.55 0.000 0.000 0.000 1.605 1.487 1.414 1.361
0.60 2,193 2.187 2.171 1.532 1.402 1.325 1.270
0.65 2.162 2.136 2.071 1.443 1.308 1.230 1.175
0.70 2.518 2.064 1.884 1.305 1.204 1.133 1.078
0.75 2,342 1.941 1.692 1.190 1.088 1.023 0.972
0.80 2.328 1.762 1,469 1.068 0.969 0,907 0.859
0.85 2375 1519 1,235 0,927 0.836 0,779 0,736
0.90 1.973 1.214 0.976 0.756 0.679 0.631 0.594
0.95 0.904 0.812 0.654 0.530 0.477 0.442 0.415
&
Second circulation solution for disk circulator
PSI 0.200 0.300 0.400 0.500 0.600 0.700 0.800
K/U Cin/Yf Cin/Yf  Gin/Yf  Gin/Yf Gin/Yf CGin/Yf Gin/Yf
0.10 0.495 0.335 0.255 0.210 0.181 0.162 0.149
0.15 0.750 0.505 0.383 0.314 0.271 0.242 0.223
0.20 1.010 0.676 0.511 0.417 0.359 0.320 0.295
0.25 1.282 0.850 0.637 0.517 0.443 0.394 0.363
0.30 1.580 1.029 0.760 0.612 0,522 0.463 0.427
0.35 1.980 1.223 0.882 0.701 0.593 0.526 0.484
0.40 3.011 1.500 1.001 0.780 0.656 0.580 0.534
0.45 2.685 1.728 1.079 0.837 0.706 0.623 0.572
0.50 2.828 1.803 1.350 0.893 0.749 0.660 0.606
0.55 -0.000 -0.000 -0.000 0.935 0.782 0.689 0.633
0.60 3.073 1.775 1.282 0.963 0.806 0.712 0.654
0.65 3.511 1721 1.225 0.979 0.823 0.728 0.670
0.70 0.830 1.688 1.234 0.969 0.833 0.745 0.687
0.75 0,234 1.474 1177 0.971 0.834 0.749 0.694
0.80 -0.429 1.356 1154 0,972 0.839 0.755 0.700
0.85 -0,278 1,279 1135 0.968 0.840 0.758 0.704
0.50 1.320 1.240 1.119 0.961 0.838 0.758 0.706
0.95 1.651 1.244 1.109 0.950 0.833 0.755 0.707

' Y, is the admittance of an air spaced planar transmission

line whose width is defined by the coupling interval.

VI. COMPUTATION OF FREQUENCY RESPONSE

In addition to the calculation of circulation conditions, it
is also necessary to investigate the frequency response of
the input admittance of the junction. This is determined by
a third program which evaluates the input admittance as a
function of the normalized frequency variable

_ f - fo
b= (39)
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TABLE III
TABLES OF kg R (TABLE A) AND G /Y, (TABLE B) FOR
CIRCULATORS USING DISK,
TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL
CouUPLED
IRREGULAR HEXAGON (¢ = 50), RESPECTIVELY

First circulation solution for triangutar circulator

PsI 0.200 0.300 0.400 0.500 0.600 0.700 0.800
KU Keff.R  Keff R Keff.R Keff.R Keff.,R Keff.R Keff.R
0.10 2.455 2.450 2.444 2.438 2.432 2.428 2.426
0.15 2.451 2.438 2.423 2.409 2.396 2.397 2.382
0.20 2.448 2.421 2.392 2.366 2.346 2.331 2.323
0.25 2.458 2.402 2.351 2.312 2.283 2.262 2.250
0.30 2.504 2.386 2.301 2.247 2.210 2.183 2.166
0.35 2.536 2.383 2.241 2.174 2.327 2.089 2.061
0.40 2.524 2.518 2.175 2.095 2.040 1.996 1.961
0.45 2.493 2.492 2.101 2.007 1.946 1.897 1.857
0.50 2.448 2.445 2.021 1.916 1.849 1.795 1.751
0.55 1993 1.910 1.845 1.790 1.743 1.703 1.671
0.60 1.990 1.837 1.756 1.691 1.638 1.593 1.557
0.65 2.263 1.767 1.662 1.586 1.525 1.475 1.431
0.70 0.000 1.703 1.559 1.473 1.407 1.353 1.305
0.75 0.000 2.042 1.444 1.352 1.284 1.230 1.182
0.80 0.000 0.000 1.309 1.209 1.142 1.090 1.046
0.85 0.000 0.000 1.154 1.054 0.990 0.941 0.500
0.90 2,690 2.508 0.948 0.861 0.808 0.766 0.731
0.95 0.631 0.634 0.865 0.931 0.583 0.547 0.518
Second circulation solution for triangular circulator
PS1 0.200 0.300 0.400 0.500 0.600 0.700 0.800
KU Gin/Yf  Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf Gin/Yf
0.10 1.706 1.095 0.780 0.583 0.448 0.347 0.268
Q.15 2.562 1.629 1.146 0.849 0.649 0.503 0.391
0.20 3.444 2.144 1.476 1.079 0.820 0.637 0.500
0.25 4.431 2.640 1.755 1.262 0.956 0.745 0.590
0.30 5.703 3.142 1.974 1.398 1.057 0.829 0.663
0.35 7.066 3.797 2.134 1.497 1.143 0.916 0.754
0.40 7.323 5322 2,243 1.566 1.200 0.96% 0.804 v
0.45 -21.798 5.174 2.310 1.604 1.236 1.004 0.841
0.50 7.199 4.965 2.348 1.629 1.262 1.033 0.870
0.55 4.847 2.835 1.960 1.489 1.197 0.993 0.836
0.60 5.556 2.915 1.998 1.518 1.222 1.016 0.861
0.65 10.533 2.979 2.014 1.535 1.242 1.042 0.893
0.70 -0.000 3.130 2.025 1.542 1.253 1.057 0.913
0.75 -0.000 5.718 2.029 1.537 1.251 1.059 0.917
0.80 -0.000 -0.000 2.067 1.556 1.265 1.069 0.925
0.85 -0.000  -0.000 2.052 1.540 1.255 1.064 0.923
0.90 1.454 1.031 1.996 1.501 1.230 1.048 0.913
0.95 3.585 2.438 2.765 2.541 1.249 1.054 0.915

where f is the operating frequency and f, is the center
frequency. The ferrite material is assumed to be just
saturated and the value of k /p is given by

k_ 1M,

Boowpg
y is the gyromagnetic ratio (2.21X 10°(rad/s/(A /m)), u,
the permeability of free space (47 X 1077 H/m), and M,
the saturation magnetization (Telsa).

One interesting case is the class of devices which are
arranged so that «/u is 0.67 at the center of frequency.

(40)
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TABLE IV
TABLES OF kot R (TABLE A) AND G/ Y, (TABLE B) FOR
CIRCULATORS USING DISK,
TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL
COUFPLED
IRREGULAR HEXAGON (¢ = 50), RESPECTIVELY

First circulation solution using regular hexagon

Psl 0.200 6.300 0.400 0.500 0.524
KU Keff.R Keff.R Keff.R Keff.R Keff.R
0.10 2.004 2.003 ' 2.002 2.000 1.999
0.15 1.997 1.994 1.990 1.985 1.984
0.20 1.985 1.981 1.974 1.963 1.963
0.25 1.973 1.965 1.953 1.938 1.934
0.30 1.960 1.946 1.928 1.905 1.899
0.35 1.945 1.924 1‘.896 1.863 1.856
0.40 1.930 1.897 1.857 1.813 1.803
0.45 1.917 1.866 1.811 1.754 1.742
0.50 1.913 1.829 1.755 1.686 1.671
0.55 0.000 1.783 1.688 1.608 1.592
0.450 2.348 1.726 1.610 1.522 1.504
0.65 2.267 1.653 1.519 1.426 1.407
0.70 2,151 1.551 1.413 1.321 1.302
0.75 2.012 1.854 1.276 1.184 1.174
0.80 1.849 1.691 1.166 1.064 1,051
0.85 1.660 1.484 1.028 0.928 0.914
0.90 1.464 1.218 0.828 0.764 0.753
0.95 1.093 0.860 0.602 0.539 0.530
Second circulation solution using regular hexagon
PSI 0.200 0.300 0.400 0.500 0.524
KU Gin/Yf Gin/Yf Gin/Yt Gin/Yf Gin/Yf
.10 0.569 0.375 0.276 0.216 0.205
0.15 0.853 B8.561 0.413 0.323 0.306
0.20 1.133 0.748 0.546 0.426 0.404
0.25 1.407 0.921 0.674 0.524 0.496
.30 1.661 1.082 0.786 0.604 0.571
0.35 1.915 1.241 0.897 0.685 0.646
0.40 2.155 1.388 0.997 0.758 0.713
0.45 2.375 1.516 1.083 0.820 0.771
0.50 2.583 1.619 1.151 0.871 0.818
0.55 -0.000 1.693 1.199 0.910 0.856
0.60 3.079 1.739 1.229 0.938 0.884
0.65 2.881 1.759 1.245 0.957 0.503
0.70 2.739 1.753 1.248 0.968 0.915
0.75 2.462 1.720 1.231 0.955 8.910
0.80 2.374 1.648 1.239 0.961 0.915
0.85 2.350 1.617 1.237 0.964 0.918
0.90 2.314 1.623 1.223 0.960 0.916
0.95 2.018 1.577 1.237 0.962 0.914

This implies that the value of k /u varies from 0.5 to 1.0
over an octave frequency band. The input admittance of a
Jjunction using a disk resonator is shown in Fig. 10 for a
range of coupling angles ¢ between 0.45 and 0.8. For
smaller coupling angles, the equivalent circuit is not well
behaved over the frequency interval. The input admittance
is, in general, complex except for ¥ close to 0.5 where it is a
nearly frequency independent conductance. This is the
so-called tracking solution [5], [16].

In Fig. 11, the frequency response of a circulator using
the triangular resonator is given. While G/ Y, is nearly
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TABLE V
TABLES OF ki R (TABLE A) AND G /Y;) TABLE B) FOrR
CIRCULATORS USING DIk,
TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL
COUPLED
IRREGULAR HEXAGON (¢ = 50), RESPECTIVELY

First circulation solution using irregular hexagon
narrow wall coupled (@ = 50)

PSl 0.200 0.300 0.400 0.436
KU Keff.R Keff.R Keff.R Keff.R
0.10 2.004 2.003 2.002 2.002
0.15 1.997 1.995 1.993 1.992
0.20 1.988 1.985 1.980 1.978
0.25 1.976 1.971 1.964 1.961
0.30 1.953 1.955 1.944 1.939
0.35 1.949 1.937 1.920 1.912
0.40 1.934 1.916 1.891 1.881
0.45 1.919 1.892 1.857 1.843
0.50 1.903 1.862 1.815 1.7297
0.55 1.893 1.823 1.761 1.738
0.60 2.542 1.778 1.697 1.670
0.65 2.505 1.731 1.622 1.592
G.70 2.441 1.617 1.523 1.499
0.75 2.556 2.084 1.365 1.347
0.80 ' 2.564 1.854 1.256 1.217
0.85 2.570 1,633 la22 1.073
0.90 1.856 1.372 0.933 0.892
0.95 1173 0.999 0.671 0.635
Second circulation solution using irregular hexagon
narrow wall coupled (@ = 50}
P51 0.200 0.300 0.400 0.436
K/ Gin/Y§ Gin/Yf Gin/Yf Gin/Yf
0.10 0.424 0.280 0.207 0.188
0.15 0.635 0.418 0.308 0.281
0.20 0.844 0.555 0.408 0.371
0.25 1.050 0.689 0.505 0.459
0.30 1.252 0.819 0.598 0.542
0.35 1.449 0.944 0.686 0.621
0.40 1.639 1.063 0.769 0.695
0.45 1.815 1172 0.844 0.761
0.50 1.972 1.263 0.906 0.816
0.55 2.117 1.331 0.951 0.857
0.60 2.683 1.385 0.984 0.888
0.65 2.463 1.428 1.010 0912
0.70 2.357 1.439 1.025 0.929
0.75 0.036 1.363 1.024 0.931
0.80 -0.547 1.308 1.035 0.936
0.85 -0.141 1.276 1.039 0.939
0.90 1.524 1.245 1.035 0.937
0.95 1.460 l.181 1.032 0.935

frequency independent within specific limits, B/ Y, retains
a finite slope over the whole range of coupling angles.

The result for a regular hexagon is given in Fig. 12. The
smaller values of coupling, while exhibiting a small value of
B/Y; over the frequency range, cannot be described by a
constant conductance. Conversely, devices with larger cou-
pling angles, which exhibit a frequency independent G /Y,
have a finite susceptance slope parameter. It can be seen
that the solution remains well behaved for narrower cou-
pling angles than the disk and triangle. An upper bound is
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TABLE VI
TABLES OF k¢ R (TABLE A) aND G /Y;(TABLE B) For
CIRCULATORS USING DIsk,
TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL
COUPLED
IRREGULAR HEXAGON (¢ = 50), RESPECTIVELY

First circulation solution using irreqular hexagon
broad wall coupled (@ = 50)

(24331 0.200 0.300 0.400 0.500 0.600 0.611
K/U Keff.R Keff.R Keff.R Keff.R Keff.R Keff.R
o
0.10 2.004 2.002 2.000 1.997 1.994 1.912
0.15 1.997 1.993 1.588 1.981 1.974 1.857
.20 1.986 1.979 1.970 1.958 1.945 1.802
0.25 1.973 1.961 1.945 1.926 1.906 1.747
0.30 1.958 1.939 1.914 1.885 1.857 1.691
0.35 1.942 1.912 1.875 1.835 1.799 1.633
0.40 1.928 1.880 1.827 1.776 1.731 1.573
0.45 1.926 1.844 1.771 1.707 1.656 1.510
0.50 2.273 1.805 1.707 1.630 1.572 1.444
0.55 2.251 1.764 1.632 1.544 1.481 1.374
0.60 2.185 1.715 1.549 1.453 1.386 1.299
0.65 2.089 2.011 1.459 1.358 1.289 1.220
0.70 1.977 1.884 1.371 1.258 1.185 1.133
B.75 1.857 1.752 1.243 1.133 1.072 1.038
0.80 1.687 1.524 1.107 1.014 0.957 0.932
0.85 1.493 1.289 0.969 0.884 0.828 0.811
0.90 1.246 0.902 0.789 0.726 0.679 0.665
0.95 0.914 0.670 0.561 0.511 0.478 0.472
Second circulation solution using trregular hexagon
broad wall coupled (@ = 50)
Psl 0.200 0.300 0.400 0.500 0.600 0.611
K/ Gin/Yf Gin/Yt Gin/Yf Qin/Yf Gin/Yt Gin/Yf
0.10 0.71%9 0.473 0.348 0.271 0.219 0.814
0.15 1.075 0.706 0.518 0.403 0.324 0.467
0.20 1.425 0.934 0.683 0.529 0.424 0.493
0.25 1.768 1.154 0.841 0.648 0.516 0.505
0.30 2.099 1.364 0.987 0.755 0.597 0.509
0.35 2.416 1.558 1.119 0.850 0.667 0.509
0.40 2.720 1.733 1.234 0.931 0.726 0.507
0.45 3.022 1.886 1.329 0.999 0.777 0.503
0.50 3.875 2.014 1.406 1.057 0.822 0.498
0.55 3.760 2.116 1.461 1.103 0.861 0.492
0.60 3.563 2.163 1.482 1.126 0.886 0.485
0.65 3.327 2.278 1.479 1.131 0.898 0.477
0.70 3.079 2.128 1.479 1.130 0.901 0.468
0.75 2.870 2.026 1.445 1.101 0.893 0.46)
0.80 2.832 2.023 1.413 1.094 0.899 0.452
0.85 2.781 1.994 1.396 1.090 0.501 0.444
0.90 2.776 1.921 1.369 1.077 0.897 0.437
0.95 2.680 1.950 1.400 1.092 0.893 0,426

placed on the maximum coupling angle which may be used
by the width of the side of the hexagon to which the
coupling port is connected.

It is also possible to design circulators using irregular
hexagonal resonators which may be coupled through both
the broad and narrow walls. The width of the narrow wall
restricts the range of possible coupling angles to lower
upper limit than that for the broad wall. The results for a
narrow wall coupled circulator are given in Fig. 13 and for
a broad-wall coupled device in Fig. 14. It is observed that
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Fig. 10. Frequency response of planar circulator using disk resonator
(x/p=0.67).
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Fig. 12. Frequency response of planar circulator using regular hexago-

nal resonator (x /p = 0.67).
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the gyrator conductance of disk, regular and irregular
hexagons by and large exhibit the same values for the
optimum coupling angle in the tracking region.

VIL

This paper has described a finite element analysis of
planar junction circulators. It has been used to calculate
the circulation conditions of devices using disk, triangular,
regular, and irregular hexagons over the range 0 <k /p <1.

The method can also be used to plot the frequency
response of junctions. In order to demonstrate this, the
octave band defined by the so-called tracking interval,
0.5 <k /p < 1.0, has been studied for each of the resonators
discussed previously.

CONCLUSIONS
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