
1964 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES VOL. 30, NO. It, NOVEMUER 1982

A Finite Element Analysis of Planar
Circulators Using Arbitrarily Shaped

Resonators
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Abstract —A planar circulator consists, in general, of three transmission

tines, connected through suitable matching networks to a magnetized

ferrite resonator having three-fold symmetry. This paper describes a finite

element anafysis which enables the Z-matrix of a planar circulator using

arbitrary shaped resonators to be calculated. This technique allows quite

general computer programs to be written which permit tables of circulation

solutions to be calculated. Resufts for junctions using disk, triangular, and

irregular hexagonal resonators are included in the text. The frequency

response of junction circulators using various configurations whose mag-

netic variables have been chosen so that they operate over the widely used

tracking interval has afso been evafuated. The optimum response is in each

case associated with a unique coupling angle.

I. INTRODUCTION

A PLANAR junction circulator consists, in general, of

a three-fold symmetric resonator of arbitrary shape

to which three transmission lines are connected. A com-

plete description of planar circulators using disk resonators

has been presented in the literature [1]–[5], and some

approximate analyses are available for junctions using

triangular [6] and Wye [7] resonators. The general boundary

value problem has been treated by Miyoshi [8], [9] who

used a contour integration formulation to form the entries

of the impedance matrix of the junction. Miyoshi also

presented an alternative analysis in which the open circuit

parameters of the junction are expanded in terms of the

modes of the magnetized planar resonator. The decoupled

resonator is analyzed using a variational method where the

fields are expressed as a single polynomial expansion for

the complete resonator. This second method requires that a

mathematical derivation of the polynomial coefficients be

derived analytically for each individual resonator shape

required.

This paper describes a finite element approach using the

variational formulation introduced by Miyoshi. The

method, which reduces to that of Silvester [ 10]–[ 14] in the

demagnetized case, differs from that of Miyoshi in that it

permits a complicated resonator shape to be subdivided

into a number of smaller elements, thus allowing a quite
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general computer program to be written. Both the finite

element method, described in this paper, and the contour

integration method used by Miyoshi, currently require the

manipulation of relatively large matrices. The finite ele-

ment method, however, has the advantage that it is possi-

ble to build on the work which has been found valuable in

waveguide analysis. The contour integration approach re-

quires that the matrix problem be recomputed for each

coupling width chosen, whereas in the finite-element ap-

proach the coupling angle is not chosen until after the

matrix manipulations are completed. This may result in a

computational saving if a large number of coupling angles

are to be considered.

To determine the performance of the three-port device as

a circulator, the circulation boundary conditions [3] are

imposed on the elements of the Z matrix. This gives the

operating frequency and gyrator level of the device and,

subsequently, allows the frequency response to be calcu-

lated. Circulation conditions over the complete K/p range

for circulators using disk, irregular hexagonal, and triangu-

lar resonators are presented in this paper. As an applica-

tion of this work, the frequency response of the input

admittance has been evaluated with IC/p = 0.67 at the

center frequency.

It is shown that circulators using each resonator shape

can be arranged to exhibit well-behaved equivalent circuits.

These would be consistent with the design of an octave-

band circulator subject to the design of a suitable matching

network. None of the resonators analyzed, however, exhibit

characteristics which would allow any one to be designated

‘ideal’ for the design of octave-band circulators.

II. ELECTROMAGNETIC AND NETWORX

FORMULATION FOR PLANAR JUNCTION CIRCULATORS

One description of a planar junction circulator is in

terms of its impedance matrix. In order to obtain this

matrix, the relationship between the electric and magnetic

fields at the coupling ports must be determined. Bosma [ 1],

[2] has obtained such a relationship for a disk circulator

using Green’s function techniques. A similar procedure has

been utilized by Miyoshi [8] for arbitrary resonator shapes

in which he derives an expansion for the open circuit

parameters in terms of a series of eigenfunctions I#S.which
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he calculates using a variational method. In this section, — Conductor

this expansion due to Miyoshi is developed. ~ Fwrite or Dielectric

A generalized schematic diagram of a circulator is shown

in Fig. 1. It consists of a three-fold symmetric, magnetized,
z

ferrite resonator to which coupling lines are connected.

I %~$h

2H
/

These are printed onto either a dielectric or demagnetized ~:
ferrite substrate. The boundary of the resonator is des- Microst np Strlpline

ignated by a contour t along which two unit vectors are ~
defined, a normal vector i and a tangential vector f. The

separation H between the ground plane and the center

conductor is arranged to be small with respect to the
w

wavelength in order to ensure that higher order modes

which vary in the z direetion are suppressed. This restric-

tion, when applied together with the boundary conditions

on the center conductor, implies that only the ( E=, Hx, Hy )

field components exist.

The EZ field in a planar junction circulator satisfies the

wave equation [1], [2]

(V:+k&)Ez=O (1) — Magnet!c Wall

where keff, the wave number, is given by
---- Coupling Port

Fig. 1. Generalized schematic diagram of planar junction circulator.

k:ff = tizpov.ffcocf. (2)

cf is the relative perrnittivity of the ferrite medium, and the

effective permeability p,ff is given by

# – K2

Neff – ~
.— (3)

where p and ~ are the diagonal and off-diagonal compo-

nents of the tensor permeability y of the ferrite.

On the boundary, the tangential magnetic field H, is

equal to zero and this may be expressed as a boundary

condition on E, to give

aE K 6’EZ
$+j– — =0 on ~.

~ at

At the coupling ports, H, is not zero and E. satisfies

6’EZ K 6’fiZ
—+j– —=
c?n

jwpopeffH1,
P at

(4a)

(4b)
— Magnetic Wall

--- Cwplmg Port

In order to solve (1) in conjunction with (4a-b), it is Fig. 2. Coordinate convention for Green’s fnnction

convenient to introduce a Green’s function G(rl r. ). Two

variables are defined when using a Green’s function; the
point r at which the Ez field is observed and the coupling

port coordinate r.. These conventions are summarized in

Fig. 2.

The Green’s function C( rlro ) is defined as the solution

to the equation

(v? + k~f,)G(rlri) = - .MpOp@(r-ri) (5)

where b(r – r.) is the dirac delta function. The Green’s

function must satisfy the boundary condition

(6)

The Green’s function, whose units are (fl/m), is a gen-

eralization of that used for a disk by Bosma [1] who sets

out its properties in detail and show that

3

Ez(r)= ~ ~G(rlro)Ht(ro)dto
~=1 P,

(7)

where the integration is carried out over the coupling port

Pi. E=(r) applies at any point in the resonator including the

intervals defined by the coupling points.

At this point, the derivation of Miyoshi’s [8] contour

integration method and variational method diverge. The

contour integration method consists of discretizing the
boundary and, by employing a different Green’s function

which satisfies the wave equation but which does not

satisfy (6), reducing a contour integration whose form is

similar to (7) to a set of matrix equations. In his variational

approach, Miyoshi expanded the Green’s function as a
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series of eigenfunctions +. to give

In practice, sufficiently accurate results are obtained when

this series is truncated to around 10 terms. The eigenfunc-

tions +. and the eigenvalues k. are the solutions to the
differential equation

(v~+k~)@a(r)=O (9)

subject to the boundary condition imposed on the Green’s

function given in (6). The eigenfunctions are orthogonal

and are normalized so that

jj+a(r)o$(r)~$=l. (lo)
s

In the demagnetized planar circuit, $. is directly equivalent

to the electric field of the resonant modes in the planar

resonator, whereas, in the magnetized case, += represents

the complex conjugate of E=.

Assuming that H, is a constant over each coupling port,

Miyoshi derived the relation between the average electric

field at port i and the magnetic field at port j from (7) and

(8) giving

(11)

assuming all ports other than j are open circuited.

In order to derive a relationship for Z,, from (11) it is

necessary to introduce the characteristic impedance R, of a

planar transmission line of width W, substrate thickness H,

and constitutive parameters Ef and p~ff. In stripline, R ~may

be calculated using Richardson’s technique [15] while the

equivalent waveguide technique is commonly used in mi-

crostrip [17], [18]. For an n port where each of the coupling

ports are of equal width W, Z,, is given by

JR ekeff2,, =75 1 Jo”wj%(r)odto.
~=1 k;–k:ff Pt “ P,

(12)

This analysis is a more general statement of the treat-

ment presented by Bosma [2] for the particular case of a
disk resonator.

HI. VARIATIONAL SOLUTION FOR EIGENFUNCTIONS

USING MATRIX EIGENVALUE METHOD

The Z matrix of a junction circulator can be derived

provided that the eigenfunctions O=, which satisfy (9) to-

gether with the boundary conditions given by (6), are

known. It is only possible to solve these equations analyti-

cally in a very small number of cases, and the most

convenient method, in the general case, is to use a varia-

tional approach.

Miyoshi [8] has recognized that the trial function +:,

which causes the functional

to be minimized, satisfies both the differential equation

and the boundary conditions for the eigenfunctions +..

When the value of K/p is set to zero, F(o;) reduces to the

functional used by Silvester [10] in his analysis of arbi-

trarily shaped waveguides.

The trial function ~~ is an approximation to the exact

function G. and it is expanded as

n

The terms al area suitable set of real basis functions and u,

are the complex coefficients. There are n basis functions

included in the expansion. In this paper, the basis func-

tions are chosen using the finite element method.

Substituting (14) into the functional F(~~ ) in (13) and

ensuring that the functional is minimized by imposing the

Rayleigh-Ritz condition

(15)

reduces the problem to a set of simultaneous equations of

the form

[[~] -k:[d][u]=o (16)

which may be recognized to be the general matrix eigen-

value problem

[x4][u]=k:[B][u]. (17)

If the symmetric square matrix B is reduced to the product

LLT, where L is a lower triangular matrix, (17) may be

reduced to the familiar eigenvalue problem

[L-l] [A][L-l]~[u] =k:[u].

A and B are square matrices

and may be reduced to

[A]= [D]+j~[C]

where

The elements of the B matrix are given by

(18)

(19)

(20)

(21a)

(21b)

(22)

The B matrix is reduced to LLT computationally and, thus,
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an analytic expression for L is not given. Once n is selected,

the matrix eigenvalue equation will yield n eigenvalues k:

and column eigenvectors [u], n is the number of basis

functions included in (14).

Silvester, using the finite element method, has calculated

both the B matrix and the D matrix (the B matrix is the T

matrix and the D matrix is the S matrix in Silvester’s

notation) which are symmetric and are fully tabulated in

[11]. The C matrix is skew-symmetric and is derived in this

paper.

IV. FINITE ELEMENT ANALYSIS

In the variational method, it is possible to choose any

suitable set of basis functions to expand the trial function

((14)). Miyoshi [8] uses a polynomial expansion which

describes the fields in the complete resonator. This has the

disadvantage that the A and B matrices given by (20) and

(22) must be recalculated for every different resonator

shape. In the finite element method used by Silvester

[10]-[14] in his analysis of arbitrary shaped waveguides,

this problem is overcome by subdividing the resonator

region into triangular elements. A polynomial expansion

for the eigenfunction +. is formed in each triangle in terms

of (u, al ) in (14) enabling the A and B matrices to be
calculated. These are then assembled together to form the

complete matrix eigenvalue problem.

Using the finite element method, Silvester [11] has pre-

sented expressions for polynomial basis functions in trian-

gular elements. These are given in terms of triangular area

coordinates for each point inside a triangle. Each coordi-

nates is defined as the ratio of the perpendicular distance

to the wall opposite vertex i to the length of the altitude

drawn to vertex i. From Fig. 3 it can be seen that the al

coordinate of point Q is given by

(23)

and the other coordinates {z and {~ are defined in a similar

manner. It is important to note that the three coordinates

are related by [11]

(,+{2+{3=1. (24)

In the finite element method described in this paper, the

basis functions a, in (14) are polynomials of degree p and

these are arranged to provide a p’th-order interpolation to

the eigenfunction += over each triangle. In general, a poly-

nomial of degree p in two coordinates will have m coeffi-

cients where

nz=(p+l)(p +2)/2. (25)

Over each triangular element, m points (nodes) are dis-

tributed and each basis function is arranged to take the

value 1 at one node and O at all the others. Thus, the

coefficients of the basis functions a, in (14) represent

the amplitude of the eigenfunction ~~ at point i. The

distribution of the nodes over a triangle for first-, second-,

third-, and fourth-order polynomials are illustrated in Fig.

4. Each point is labeled with three integers, i, j, and k from

which its triangular area coordinates ((1, (z, {~) can be

1

d

Fig. 3. Dimensions used in the definition of triangular area coordinates.

Fig. 4. Distribution of nodes over triangle for first-, second-, third-, and

fourth-order polynomial.

derived using the relation

(26)

Equation (24) is also satisfied since

i+j+k=p. (27)

Associated with each point is a basis function

aij~((l, {z,(~) which is given by [111

a,,~(fI, {Z, {3)= p,({l)pj(~2)pk(~3) (28)

where

I’,((q) = p, (‘({y+ 1), r> 1 (29a)

. 1, r=() (29b)

where q and r are dummy variables which satisfy q G {1, 2, 3}
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and r c {i, j, k}. The basis function a,jk takes the value 1

at node (i, j, k) and the value O at all other nodes in the

triangle.

These formulas may now be substituted into (20) and

(22) to calculate the A and B matrices for a triangle.

The number of terms taken in (14) is determined by the

number of triangles included in a finite element division of

any particular resonator shape. There is not a simple

relation between the number of elements and the number

of basis functions since, in essence, there will be one basis

function for each node in the resonator. The number of

nodes in a particular element is a function of the order of

the polynomial approximation within that element. Equa-

tion (25) gives the number of nodes in each element as a

function of the nodes of approximation p.

In addition to the order of polynomial approximation

within each element the total number of nodes in any

resonator is determined by the number and orientation of

the elements in the resonator. This is demonstrated in Fig.

5, in which a triangle is split into three elements each of

which, individually, have three nodes. Once they are assem-

bled, however, certain nodes coincide leaving only four in

total. Thus, it is not possible to make a simple statement of

the value of n in (14). In practice, the value 90< n <100

have been found to give accurate results.

The C matrix involves integration around the contour &

and so the matrix has the value [0] if the element does not

lie along the boundary. If the element has one or more of

its sides lying along the boundary the C matrix for this

element can be written down provided it is known for the

case where an element has only one side on the boundary.

Consider the case where the first-order polynomial inter-

polation is to be employed (i.e., p = 1 in (25)). The follow-

ing expressions for the basis functions alw, aOIO, and awl

can be derived from (28):

-(a,oo — ~

-{solo — ~

-{aool — q. (30)

Substituting these expressions into (21b) leads to the fol-

lowing expression for the C matrix when the magnetic wall

lies opposite the point (1, O,O):

[1

o
[C(l>oo)]= : ; -1 . (31)

01–1

This matrix can be seen to be skew symmetric.

If the boundary lies opposite points (O, 1, O) or (O,O, 1),

the C matrix may be calculated simply by re-arranging the

matrix derived for a boundary opposite (1, O,O). For exam-

ple, in the case where a boundary lies opposite point

(O, 1, O), subscript (1)+ (2) subscript (2)+ (3), and sub-

script (3)s (l). Thus, the C matrix is given by

[1

–101
[C(o.lm]= () () o . (32)

–101

4

Fig. 5. Triangle split into three elements.

If the element has two of three sides which lie along the

boundary, the C matrix is calculated by adding the matrices

derived for elements which have magnetic walls on a single

side.

The matrices given in (31) and (32) refer to a single,

isolated triangular element. Several matrices must be as-

sembled together, however, to form the complete eigen-

value problem. Consider the case illustrated in Fig. 5 where

a triangle is split up into three elements in a fashion which

preserves the 120° symmetry. The C matrix for the com-

plete shape is given by

ro o 001 [0000

‘Ii!:! !I=li -!“!:1
(33)

which is also skew-symmetric. In the examples considered

in this paper, the A, B, and C matrices, when finally

assembled are of the order 100X 100.

The calculation of the C matrix for first-order polynomi-

als is reasonably easy, but for higher order polynomials the

volume of algebra becomes too large to be performed by

hand. Silvester [11] encountered similar difficulties and in

order to overcome the problem a computer program was

written to evaluate the matrix elements analytically. By

adopting a similar approach the authors have evaluated the

C matrices for up to fourth-order interpolation and these

are tabulated in Table I. In most cases, fourth-order inter-

polation is the maximum which can be used in practice as

there are 15 nodes in each element and large matrices can

be generated when only a few elements are incorporated.

Silvester [ 11] presents a table contrasting the relative merits

of using higher order interpolation or alternatively more

elements using a lower order polynomial approximation.

V. COMPUTATION OF CIRCULATION CONDITIONS

A suite of computer programs have been written which

implement the theoretical results discussed in the previous

sections. These consist, firstly, of a program which uses the

finite element method to evaluate the resonant modes of a
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TABLE I
TABLE OF C MATRICES FOR POLYNOMIALS UP TO FOURTH ORDER

N= 1 N. J
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N= 4
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Uoooo
u N 000
u o 000
u 0000
00 000
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u 0000
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u o 000
u o 000
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u o 0 0 0

Fig. 6. Definition of coupling angle+.
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Fig. 7. Comparison between finite element and closed form (Davies and
Cohen) solutions for disk resonator.
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magnetized ferrite-loaded planar resonator. These resonant

modes are then used bya second program to calculate the

elements of the impedance matrix. This program then

determines the lowest value of keffR which satisfies the

first circulation condition [3].

Im( Zi.) = O (34)

for a range of values of rc/p and coupling angles (the angle

which sustends the coupling interval W in Fig. 6). The

input resistance of the circulator at this value of keff R is

then calculated using the second circulation condition

Rin = Re( Zin) (35)

where

(36)

In keeping with convention, the circulation data are tabu-

lated in terms of GiD and B,. where

Yin = Gin+ jBin = ~.
m

(37)

In Fig. 7(a) and (b), the results obtained using the

method described in this paper are compared with those

produced by previous authors for a disk [3], [5]. In calculat-

ing these results, the infinite series in (12) has been trun-

cated to 10 terms. It can be seen that the agreement is best

for larger coupling angles and less good for small values of

~. The reason for this is that smaller coupling angles excite

higher order modes more strongly, and these higher order

modes tend to be computed less accurately by the finite

element program.
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W.2Rsiny

,, ,\.—-

Circutator Using Disk

Fig. 8. Coordinate system of disk resonator

R=AIJ3
W= Rtanp W=BRtanq

@@

l’-++ 1’++

A.2Rs!n(r,6/21 ;B.2Rs!n(6D-i3/2) A.2Rsinb/2), B.2Rsin(Eit$/2
W=2Rcos[0/2)tan~

w ‘=2m-”:’a”p

Fig. 9. Coordinate system of triangle, regular hexagonal, narrow, and
broad-wall coupled irregular hexagonal resonators.

In Tables II–VI, the first and second circulation solu-

tions are tabulated for disk, triangular, regular hexagon,

narrow and broad wall coupled irregular hexagons il-

lustrated in Figs. 8 and 9. These tables are computed

retaining the first 10 eigenfunctions O. in (12). It is ob-

served that at certain points in the tables (e.g., a triangle
0.7< K/p< O.85) the values keffR and Gti/Yf take the

value O. This indicates that no circulation condition was
located with keffR <3.0. In certain cases, Gin/Yf takes a

negative value. At these points, the lowest circulation con-

dition represents rotation in the opposite direction.

The values of Gin and Bin are normalized to Yj which is

given by

Yf=fi Y,. (38)

TABLE II
TABLES OF keff R (TABLE A) AND G/~ (TABLE B) FOR

CIRCULATORS USING DISK,

TRIANGLE REGULAR HEXAGON, NARROW AND BROAD-WALL

COUPLED

IRREGULAR HEXAGON ($= 50), RESPECTIVELY

First C!rc.lation solution for disk Cipculatm

Psl 0.200 0.300 0.400 0.500 0.600 0.700 0.800

Klv Keff.R Keff.R Keff.R Keff.R Keff.R Keff.R Keff.R

0.10 1.862 1.859 1.s57 1.854 1.851 1.048 1.8d6

0.15 1.864 1.859 1.852 1.845 1.839 1.833 1.828

0.20 1.869 1.859 1.847 1.834 1.821 1.610 1.801

0.25 1.880 1.861 1.840 1.818 1.79s 1.780 1.766

0.30 1.903 1.869 1.B33 1.79s 1.767 1.741 1.720

0.35 1.96S 1.!389 1.826 1.772 1.729 1.693 1.665

0.40 2.206 1.960 1.823 1.741 1.6S1 1.636 1.600

0.45 2.216 2.180 1.862 1.711 1.630 1.%72 1.529

0.50 2.22s 2.224 2.192 1.664 1.564 1.497 1.048

0.55 0.000 0.000 0.000 1.605 1.4s7 1.414 1.361

0.60 2.193 2.1S7 2.171 1.532 1.402 1.325 1.270

0.65 2.162 2.136 2.071 1.443 1.30B 1.230 1.175

0,70 2.518 2.064 1.s84 1.305 1.204 1.133 1.o78

0,75 2.342 1,941 1.692 1.190 1.080 1.023 0.972

0.s0 2.328 1.762 1.469 1.060 0,967 0,907 0.859

0.85 2,375 10519 1.235 0,927 0.836 0.779 0.736

0.90 1.973 1.214 0.916 0.756 0.679 0.631 0.594

0.95 0.904 0.812 0,654 0.530 0.477 0.442 0.415

Second circulation solution for disk circulator

PSI 0.200 0.300 0.400 0.500 0.600 0.700 0.s00

K/U G,”/Yf G,n/Yf G,”/Vf G,+ff G!n/Yf G,rJYf Gt”/Vf

0.10 0.495 0.335 0.255 0.210 0.181 0.162 0.149

0.15 0.750 0.505 0.383 0.314 0.271 0.242 0.223

0.20 1.010 0.676 0.511 0.417 0.359 0.320 0.295

0.25 1.282 0.850 0.637 0.517 0.443 0+394 0.363

0.30 1.580 1.029 0.760 0.612 Osszz 0.463 0.4Z7

0.35 1.980 1.223 0,8S2 0.701 0.593 0.5Z6 0.484

0.40 3.011 1.500 1.001 0.780 0.656 0.580 0.534

0.45 2.685 1.728 1.079 0.s37 0.706 0.623 0.572

0.50 2.828 1.s03 1.350 0.893 0.749 0.660 0.606

0.55 -0.000 -0.000 -0.000 0.935 0.78Z 0.689 0.633

0.60 3.073 1.775 1.28Z 0.963 0.S06 0.712 0.654

0.65 3.511 1.721 1,2Z5 0.979 0.823 0.728 0.670

0.70 0.830 1.688 1.234 0.969 0.833 o.7k5 0.6B7

0.75 0,234 1.474 1.177 0.971 0.834 0.749 0,694

0,80 -0.4Z9 1.356 1.154 0.972 0.839 0.755 0.700

0.65 -0.27S 1.Z79 1.135 0.968 0.840 0.758 0.704

0.90 1.320 1.240 1.119 0.961 0.s30 0.75B 0.706

0.95 1.651 1.Z44 1.109 0.950 0.833 0.755 0.707

‘ Y, is the admittance of an air spaced planar transmission

line whose width is defined by the coupling interval.

VI. COMPUTATION OF FREQUENCY RESPONSE

In addition to the calculation of circulation conditions, it

is also necessary to investigate the frequency response of

the input admittance of the junction. This is determined by

a third program which evaluates the input admittance as a

function of the normalized frequency variable

(39)
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TABLE III
TABLES OF k,ff R (TABLE A) AND G/~ (TABLE B) FOR

CIRCULATORS USING DISK,
TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL

COUPLED
IRREGULAR HEXAGON ($= 50), RESPECTIVELY

First cimdati.n solution for triangular ci,culat.ar

PSI 0.200 0.300 0.400 0.500 0.600 0.700 0.800

TABLE IV
TABLES OF k,ff R (TABLE A) AND G/~ (TABLE B) FOR

CIRCULATORS USING DISK,
TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL

COUPLED
IRREGULAR HEXAGON (+= 50), RESPECTIVELY

first circulation solution who reoular hexaoon

PSI 0.200 0.300 0.400 0.500 0.524

KIV Keff.R Keff.R Keff.R Keff.R Keff.R Keff.t7 Keff.R KILJ Keff.R Keff.R Keff.R Keff.R Keff.R

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

2.455

2.451

2.448

2.658

2.504

2.536

2.524

2.495

2.448

1.993

1.990

2.263

0.000

0.000

0.000

0.000

2.690

0.631

2.450 2.444 2.438 2.432 2.42a 2.426

2.438 2.423 2.h09 2.396 2.391 2.382

2.4zl 2.392 2.366 2.346 2.331 2.323

2.402 2.351 2.312 2.283 2.262 2.250

2.386 2.301 2.247 2.210 2.183 2.166

2.383 2.241 2.174 2.127 2.089 2.061

2.518 2.175 2.095 2.040 1.996 1.961

2.492 2.101 2.007 1.946 1.897 1.857

2.445 2.021 1.916 1.849 1.795 1.751

1.910 1.845 1.790 1.743 1.703 1.671

1.837 1.756 1.691 1.638 1.593 1.557

1.767 1.662 1.586 1.325 1.475 1.431

1.703 1.559 1.473 1.407 1.353 1.305

2.042 1.444 1.352 1.284 1.230 1.182

0.000 1.309 1.209 1.142 1.090 1.046

0.000 1.154 1.054 0,990 0.941 0.900

2.508 0.948 0.861 0.808 0.766 0.731

0.634 0.865 0.931 0.583 0.547 0.518

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.40

0.65

0.70

0.75

0.80

0.85

0.90

0.95

2.004

1.997

1.985

1.973

1.960

1.945

1.930

1.917

1.913

0.000

2.348

2.267

2.151

2.012

1.849

1.660

1.464

1.093

2.003 2.002 2.000 1.999

1.994 1.990 1.985 1.984

1.981 1.974 1.965 1.963

1.965 1.953 1.938 1.934
1.946 1.928 1.905 1.899
1.924 i.896 L863 1.856

1.897 1.857 1.813 1.803
1.866 1.811 1.754 1.742
1.829 1.755 1.686 1.671

1.783 1.688 1.608 1.592

1.726 1.610 1.522 1.504

1.653 1.519 1.426 1.407

1.551 1.413 1.321 1.302

1.854 1.276 1.184 1.174

1.691 1.166 1.064 1.051

1.404 1.028 0.928 0.914

1.218 0.838 0.764 0.753

0.880 0.602 0.539 0.530

Second circulation solution for triangular circulator Second circ.lati.m solution usina reaular hexaxm

PSI 0.200 0.300 0.400 0.500 0.600 0.700 0.800

KIU G,”lYf GinlYf G,n/Yf G,nlYf Gin/Yf Gin/Yf Gin/Yf

PSI 0.200 0.300 0.400 0.500 0.524

Kltl GinlYf GinlYf Gt”/Yf Gin/Yf Gin/Yf

0.10 1.706 1.095 0.780 0.583 o.44fl

0.15 2.562 1.629 1.lf16 0.849 0.649

0.20 3.444 2.144 1.476 1.079 0.820

0.25 4.431 2.640 1.755 1.262 0.956

0.30 5.703 3.142 1.974 1.398 1.057

0.35 7.066 3.797 2.134 1.497 1.143

0.40 7.323 5.322 2.243 1.566 1.200

0.45 -21.798 5.174 2.310 1.604 1.236

0.50 7.199 4.965 2.348 1.629 1.262

0.55 4.847 2.835 1.960 1.489 1.197

0.60 5.556 2.915 1.798 1.518 1.222

0.65 10.533 2.979 2.014 1.535 1.242

0.70 -0.000 3.130 2.025 1.542 1.253

0.75 -0.000 5.718 2.029 1.537 1.251

0.80 -0.000 -0.000 2.067 1.556 1.265

0.85 -0.000 -0.000 2.052 1.540 1.255

0.90 1.454 1.031 1.996 1.501 1.230

0.95 3.585 2.438 2.765 2.541 1.249

0.347

0.503

0.637

0.745

0.829

0.916

0.969

1.004

1.033

0.993

1.016

1.042

1.057

1.059

1.069

1.064

1.048

1.054

0.268

0.391

0.500

0.590

0.663

0.754

0.604

0.861

0.870

0.836

0.861

0.893

0.913

0.917

0.925

0.923

0.913

0.915

0.10 0.569 0.375 0.276

0.15 0.853 0.561 0.Q13

0.20 1.133 0.744 0.546

0.25 1.407 0.921 0.674

0.30 1.661 1.082 0.786

0.35 1.915 1.241 0.897

0.40 2.155 1.3BLI 0.997

0.45 2.375 1.516 1.083

0.50 2.583 1.619 1.151

0.55 -0.000 1.693 1.199

0.60 3.079 1.739 1.229

0.65 2.881 1.759 1.245

0.70 2.739 1.753 1.248

0.75 2.&62 1.720 1.231

0.80 2.374 1.648 1.239

0.85 2.35o 1.617 1.237

0.90 2.314 1.623 1.223

0.95 2.018 1.577 1.237

0.216

0.323

0.426

0.524

0.604

0.685

0.756

0.820

0.871

0.910

0.938

0.957

0.968

0.955

0.961

0.964

0.960

0.962

0.205

0.>06

0.404

0.496

0.571

0.646

0.713

0.771

0.818

0.856

0.884

0.903

0.915

0.910

0.915

0.918

0.916

0.914

where f is the operating frequency and f. is the center

frequency. The ferrite material & assumed to be just

saturated and the value of IC/p is given by

K yikfo

F=—@p.“
(40)

y is the gyromagnetic ratio (2.21X 105(rad/s/(A/m)), I JO

the permeability of free space (497 x 10-7 H/m), and MO

the saturation magnetization (Telsa).

One interesting case is the class of devices which are

arranged so that K/p is 0.67 at the center of frequency.

This implies that the value of K/p varies from 0.5 to 1.0

over an octave frequency band. The input admittance of a

junction using a disk resonator is shown in Fig. 10 for a

range of coupling angles $ between 0.45 and 0.8. For

smaller coupling angles, the equivalent circuit is not well

behaved over the frequency interval. The input admittance

is, in general, complex except for ~ close to 0,5 where it is a

nearly frequency independent conductance. This is the

so-called tracking solution [5], [16].

In Fig. 11, the frequency response of a circulator using

the triangular resonator is given. While G/Yf is nearly
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TABLE V
TABLES OF keffR (TABLE A) AND G/~) TABLE B) FOR

CIRCULATORS USING DISK,

TRIANGLE, REGULAR HEXAGON, NARROW AND BROAD-WALL

COUPLED

IRREGULAR HEXAGON (+= 50), RESPECTIVELY

First circulation solution using irregular hexagon
narrow wall coupled (0 = 50)

PSI 0.200 0.>00 0.400 0.436

TABLE VI
TABLES OF keff R (TABLE A) AND G/ Yf (TABLE B) FOR

CIRCULATORS USING DISK,

TRIANGLE, REGULAR I%XAGON, NARROW AND BROAD-WALL

COUPLED
IRREGULAR HEXAGON (+= 50), RESPECTIVELY

First circulation solution using mequler hexagon
broad wall c..pled (0 . 50)

PSI 0.200 0.300 0.400 0.500 0.600 0.611

K/U Keff.R Keff.R Keff.R Keff.R

0.10 Z.ooa 2.003 2.002 2.002

0.15 1.997 1.995 1.993 1.992

0.20 1.988 1.9s5 1.980 1.978

0.25 1.976 1.971 1.964 1.961

0.30 1.953 1.955 1.944 1.939

0.35 1.949 1.9>7 1.920 1.912

0.40 1.934 1,916 1.891 1.881

0.45 1.919 1.092 1.857 1.043

0.50 1.903 1.862 1.815 1.197

0.55 1.893 1.823 1.761 1.7J8

0.60 2.542 1.778 1.697 1.670

0.65 2.505 1.731 1.622 1.592

0.70 2.441 1.617 1.523 1.499

0.75 2.556 2.084 1.365 1.347

0.80 2.564 1.854 1.256 1.217

0.85 2.570 1.633 1.122 1.071

0.90 1.856 1.372 0.933 0.89’2

0.95 1.173 0.999 0.671 0.6>5

KIV Keff.R Keff.R Keff.R Keff.R Keff.R Keff.R

h.

0.10 2.004 2.002 2.000 1.997 1.994 1.912

0.15 1.997 1.993 1.988 1.981 1.974 1.857

0.20 1.986 1.979 1.970 1.958 1.945 1.802

0.25 1.973 1.961 1.945 1.926 1.906 1.747

0.30 1.958 1.939 1.914 1.885 1.857 1.691

0.35 1.942 1.912 1.875 1.835 1.799 1.633

O.ho 1.92s 1.880 1.827 L776 1.731 1.573

0.45 1.926 1.844 1.771 1.707 1.656 1.510

0.50 2.273 1.005 1.707 1.630 1.572 1.444

0.55 2.251 1.764 1.632 1.544 1.4B1 1.374

0.60 2.185 1.715 1.549 1.453 1.386 1.299

0.65 2.089 2.011 1.a59 1.358 1.289 1.220

0.70 1.977 1.884 1.371 1.258 1.185 1.133

0.75 1.857 1.752 1.243 1.133 1.072 1.038

0.80 1.687 1.524 1.107 1.014 0.957 0.932

0.85 1.493 1.289 0.969 0.084 0.828 0.811

0.90 1.246 0.902 0.789 0.726 0.679 0.665

0.95 0.914 0.670 0.561 0.511 0.478 0.472

Second circ.lati.n solution using irregular hexagon
narrow wall coupled (O = 50)

PSI 0.200 0.300 0.400 0.436

KtU G,nlYf G,n/Yf Gtn/Yf G,nlVf

0.10 0.42& 0.280 0.207 0.188

0.15 0.635 0.418 0.308 0.281

0.20 0.844 0.555 0.408 0.371

0.25 1.050 0.689 0.505 0.659

0.30 1.252 0.019 0.590 0.542

0.35 1.449 0.944 0.686 0.621

0.40 1.6>9 1.063 0.769 0.695

0.45 1.815 1.172 oa44 0.761

0.50 1.972 1.263 0,906 0.816

0.55 2.117 1.331 0.951 0.057

0.60 2.683 1.3E5 0.984 0.888

0.65 2.463 1.428 1.010 0.912

0.70 2.357 1.439 1.025 0.9’29

0.75 0.036 1.363 1.024 0.931

0.80 -o.5f!7 1.308 1.035 0.936

0.83 -0.141 1.276 1.039 0.939

0.90 1.524 1.245 1.035 0.937

0.95 1.460 1.181 1.032 0.935

frequency independent within specific limits, B/ Yf retains

a finite slope over the whole range of coupling angles.

The result for a regular hexagon is given in Fig. 12. The

smaller values of coupling, while exhibiting a small value of

B/ Yf over the frequency range, cannot be described by a

constant conductance. Conversely, devices with larger cou-

pling angles, which exhibit a frequency independent G/Yf,

have a finite susceptance slope parameter. It can be seen

that the solution remains well behaved for narrower cou-

pling angles than the disk and triangle. An upper bound is

%c.”d circulation solut!on using Irregular hexagOn
bread wall coupled (~ = 50)

Psl 0.200 0.300 0.400 0.500 0.600 0.611

K/U Gi”/Yf Gtn/Yf CMYf G,n/Yf GmlYf GmlYf

0.10 0.719

0.15 1.075

0.20 1.425

0.25 L768

0.30 2.099

0.35 2.416

0.40 2.720

0.45 3.022

0.50 3.875

0.55 3.760

0.60 3.563

0.65 3.327

0.70 3.079

0.75 2.070

0.80 2.832

0.85 2.781

0.90 2.776

0.95 2.680

0.473

0.706

0.934

1.15L

1.364

1.558

1.733

1.886

2.014

2.116

2.163

2.278

2.128

2.026

2.023

1.994

1.921

1.950

0.348

0.518

0.683

0.841

0.987

1.119

1.234

1.329

1.406

1.461

1.482

1.479

1.479

1.445

1.413

1.396

1.369

l.aoo

0.271

0.403

0.529

0.648

0.755

0.850

0.931

0.999

1.057

1.103

1.126

1.131

1.130

1.101

1.094

1.090

1.077

1.092

0.219

0.324

0.424

0.516

0.597

0.667

0.726

0.777

0.822

0.861

0.886

0.898

0.901

0.893

0.899

0.901

0.897

o.tf93

0.414

0.467

0.493

0.505

0.509

0.509

0.507

0.503

0.498

0.IL92

0.485

o.f177

0.468

0.461

0.452

0.444

0.437

0.426

placed on the maximum coupling angle which maybe used

by the width of the side of the hexagon to which the

coupling port is connected.

It is also possible to design circulators using irregular

hexagonal resonators which may be coupled through both

the broad and narrow walls. The width of the narrow wall

restricts the range of possible coupling angles to lower

upper limit than that for the broad wall. The results for a

narrow wall coupled circulator are given in Fig. 13 and for

a broad-wall coupled device in Fig. 14. It is observed that
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Fig. 10. Frequency response of planar circulator using disk resonator
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the gyrator conductance of disk, regular and irregular

hexagons by and large exhibit the same values for the

optimum coupling angle in the tracking region.

VII. CONCLUSIONS

This paper has described a finite element analysis of

planar junction circulators. It has been used to calculate

the circulation conditions of devices using disk, triangular,

~egular, and irregular hexagons over the range O < K/P <1.

The method can also be used to plot the frequency

response of junctions. In order to demonstrate this, the

octave band defined by the so-called tracking interval,

0.5< K\p <1.0, has been studied for each of the resonators

discussed previously.
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